$\qquad$
DATE $\qquad$ HOUR $\qquad$

## Prokaryotes

## Part I: Gram Staining of Bacteria

## INTRODUCTION

Gram stain is commonly used to assist in bacterial identification. This stain, first developed in 1884, separates bacteria into groups, depending on their reaction to this stain. Bacteria react by testing gram-positive, gram-negative, gramvariable, with the first two groups being the most common. The response of cells to the stain is due to differences in their cell walls. Cell walls of gram-positive bacteria are predominantly a complex protein-carbohydrate polymer, peptidoglycan, located outside the plasma membrane. Cell walls of gramnegative bacteria are thinner, with less peptidoglycan present. The wall in gramnegative bacteria is a polysaccharide-protein-lipid complex. Studies of bacterial taxonomy have show that these differences define major taxonomic groups.

Gram stain relies on the use of two dyes, crystal violet (purple) and safranin (pink). Cells with the peptidoglycan wall retain the purple dye and are gram-positive. Those cells that retain the pink safranin are gram-negative.

In this lab, you will prepare and stain slides of five different bacterial species to determine how each reacts to gram stain.

## Materials

## At the "smear" station:

Bunsen Burner
Burner striker Inoculating loop
Beaker of distilled water
Bacteria cultures
Clean microscope slide

## At staining station:

Staining jars of:
Crystal Violet
Gram's Iodine
95\% Ethyl Alcohol
Safranin
1000 mL beaker with tap water

## Procedure -- "Smear" Preparation

In this section of the lab, your group will prepare a smear of each of the bacteria cultures. Make sure you carefully follow the steps below to avoid contamination of the bacteria cultures and of the lab area.

1. Carefully light the burner. Adjust the burner so you have a blue flame.
2. Sterilize the end of the inoculating loop by placing it in the flame of the burner until the wire turns bright red.

CAUTION: Use care with the open flame of the burner. Do not touch the hot end of the inoculating loop. The loop may still be quite hot after the red glow has faded.
3. With a wax pencil, label one end of the slide \#1. Place a loopful of distilled water on a clean, dry microscope slide. Sterilize the loop. Allow the loop to air cool before proceeding to the next step.
4. Lift the petri dish lid of the bacteria culture. Gently touch the sterile inoculating loop to a bacteria colony. The bacteria should be barely visible on the loop. Replace the petri dish lid. Spread the bacteria sample on the microscope slide by mixing it with the drop of water.
5. Sterilize the loop. Allow the loop to air cool before proceeding to the next step.
6. Allow the smear to dry by waving the slide over the Bunsen burner flame. To prevent the smear from cracking and peeling from the slide, do not heat the slide more than the fingers can comfortably stand.
7. After the film is thoroughly dry, FIX it by passing it quickly through the flame two or three times. Be sure the specimen side of the slide is up when fixing. Allow the slide to air cool before proceeding to the staining steps. Turn the burner off.
8. Repeat steps 1 through 7 for each culture of bacteria. Be sure to label each slide with the number of the bacteria culture.

## Procedure -- Gram Stain

9. Use a clothes pin to hold the slide during the staining procedure. Place the smear in the crystal violet for 60 seconds.
10. Rinse the slide quickly (a few seconds) in tap water and immediately place it in the Gram's iodine solution for 60 seconds.
11. Rinse the smear gently in tap water and dry it by blotting with a clean paper towel. (CAUTION: Blot gently so that the bacteria are not rubbed from the slide.)
12. Place the smear in 95\% ethyl alcohol, a decolorizing agent, for 30 seconds. Blot the slide again with a clean paper towel.
13. Immerse the slide in safranin, a couterstain, for ten seconds.
14. Wash the slide in tap water and blot it dry.
15. Examine the slide under high power of the microscope. The gram positive bacteria cells will appear violet in color and the gram negative cells will be red or pink in color.

## Observations

16. Complete the following chart. Use the pictures at the bottom of the page to help you identify the cell shape and cell arrangement.

| Culture | 1 | $\mathbf{2}$ | $\mathbf{3}$ | 4 |
| :---: | :--- | :--- | :--- | :--- |
| Drawing <br> (in color) |  |  |  |  |
| Magnification |  |  |  |  |
| Cell Size |  |  |  |  |
| Cell Shape |  |  |  |  |
| Cell <br> Arrangement |  |  |  |  |


17. Use the information below and the information you collected in this lab to match the bacterial culture ( $1,2,3$, or 4 ) to the correct species.
$\qquad$ Bacillus cereus (gram-positive, rod)
$\qquad$ Micrococcus luteus (gram-positive, coccus)
$\qquad$ Rhodospirillum rubrum (gram-negative, spiral)
$\qquad$ Serratia marcescens (gram-negative, rod)

## Part II: Questions

1. At present, the placement of all prokaryotes into Kingdom Monera is being challenged. Why?
$\qquad$
$\qquad$
$\qquad$
2. The shape and arrangement of bacterial cells are used to identify bacteria. On page 5 are drawings of several disease-causing bacteria. Use the key below to identify the bacteria in each picture.

1 a. Bacillus bacteria
b. Coccus bacteria
go to 2
c. Spirillum bacteria
2. a. Bacteria arranged in chains
b. Bacteria appear singly
3. a. Bacteria with swollen endospore
b. Bacteria without swollen endospore
4. a. Bacteria appear in pairs
b. Bacteria appear in chains
c. Bacteria appear in clumps
5. a. Bacteria have pointed ends
b. Bacteria without pointed ends
6. a. Bacteria appear in groups of 4 (Sarcina)
b. Bacteria appear in clusters
7. a. Bacteria with flagella
b. Bacteria without flagella (Spirochete)
go to 4
go to 7
Rat Bite Fever Stain A go to 3

Tetanus
Anthrax
go to 5
Strep Throat
go to 6
Pneumonia
Gonorrhea
Human skin bacteria
Staph infection
Rat Bite Fever Stain B Syphilis

3. What are three functions of the cell wall in prokaryotes?
$\qquad$
$\qquad$
4. What are peptidoglycans?
$\qquad$
$\qquad$
5. How do antibiotics affect peptidoglycans?
$\qquad$
$\qquad$
6. Identify each of the following as true of gram-positive (+) or gram-negative (-) prokaryotes.
$\qquad$ Simpler cell walls
$\qquad$ Cell walls contain large amounts of peptidoglycans
$\qquad$ Cell walls more complex
$\qquad$ Cell walls contain smaller amounts of peptidoglycans
$\qquad$ Have a membrane containing lipopolysaccharides outside the cell wall
$\qquad$ Stain purple with Grams stain
$\qquad$ Stain pink with Grams stain
7. Why are gram-negative bacteria more often disease causing than grampositive?
$\qquad$
$\qquad$
8. List the 3 types of motility used by motile prokaryotes.
$\qquad$
$\qquad$
9. Match the term with the correct definition
$\qquad$ Movement toward or away from
A. Chemotaxis a stimulus
$\qquad$ Movement toward or away from
B. Phototaxis light
$\qquad$ Movement toward or away from
C. Taxis a certain chemical
10. Explain why a photosynthetic bacterium would exhibit a positive phototaxis. A positive taxis occurs when the bacterium moves toward the stimulus.
$\qquad$
$\qquad$
11. The prokaryotic flagellum is not homologous to the eukaryotic flagellum. Use the key below to indicate if the characteristics listed below are true of prokaryotic or eukaryotic flagella.

$$
\mathbf{P}=\text { Prokaryotic } \quad E=\text { Eukaryotic }
$$

$\qquad$ smaller width
$\qquad$ covered with plasma membrane
$\qquad$ composed of flagellin
$\qquad$ $9+2$ arrangement of microtubules
$\qquad$ Rotating motion
$\qquad$ Filament is solid
$\qquad$ larger width
$\qquad$ not covered with plasma membrane ___ composed of tubulin
$\qquad$ no 9+2 arrangement
$\qquad$ Undulating motion
$\qquad$ Made of microtubules
12. Match the term with the correct description of definition.
A. Binary fission
C. Genophore
B. Endospores
D. Plasmids
$\qquad$ Prokaryotic chromosome
$\qquad$ Usually double-stranded; forms a ring; found in nucleoid region
$\qquad$ Small rings of DNA
$\qquad$ Consist of only a small number of genes
$\qquad$ Endows cell with antibiotic resistances or the ability to metabolize unusual nutrients
$\qquad$ Method of reproduction in prokaryotes
$\qquad$ Resistant cells that contain one copy of the chromosome surrounded by a durable wall
$\qquad$ Allows some prokaryotes to withstand harsh conditions
13. Why doesn't mitosis or meiosis occur in prokaryotes?
$\qquad$
$\qquad$
14. You have a bacterial infection and the doctor gives you an antibiotic that blocks the protein synthesis of the bacteria in your body. What effect does this antibiotic have on the protein synthesis in your cells? Explain.
15. Match the definition with the correct term.
$\qquad$ Change in DNA base sequence
A. Conjugation
$\qquad$ Origin of a new trait
B. Mutation
$\qquad$ Major source of variation in
C. Transduction prokaryotes
$\qquad$ Direct transfer of genes between
D. Transformation
two prokaryotes
$\qquad$ Cell takes in and incorporates DNA
from the environment
$\qquad$ Transfer of genes between cells via a virus
16. Use the key below to identify the nutrition type being described.

PA = Photoautotrophs
CA = Chemoautotrophs

PH = Photoheterotrophs
CH = Chemoheterotrophs
$\qquad$ Energy source is light; Carbon source is organic
$\qquad$ Energy source is oxidation of inorganic substances $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{Fe}^{2+}\right)$; Carbon source is $\mathrm{CO}_{2}$
$\qquad$ Energy source is organic; Carbon source is organic
$\qquad$ Energy source is light; Carbon source is $\mathrm{CO}_{2}$
$\qquad$ Two modes of nutrition restricted to certain prokaryotes; not found in other organisms
$\qquad$ Many prokaryotes, many protists, all fungi, and all animals
$\qquad$ Most plants
17. Identify each of the following as true of Saprobes or Parasites
$\qquad$ Decomposers
$\qquad$ Absorb nutrients from dead organic matter
$\qquad$ Absorb nutrients from the body fluids of a living host
$\qquad$ The Chlamydias live inside the cells of a host; leading cause of blindness and causes the most common form of STD in the US.
$\qquad$ Prokaryotes found in or on food
$\qquad$ Chemoheterotrophs
18. Match the description or definition with the correct term.
$\qquad$ Poisoned by oxygen
A. Facultative anaerobes
$\qquad$ Cannot grow without oxygen
B. Obligate aerobes
$\qquad$ Cannot use oxygen
C. Obligate anaerobes
$\qquad$ Use oxygen if it is present; uses
fermentation oxygen is absent
19. Listed below are characteristics of each group of Domain Archaea. Use the key below to indicate which group the characteristic applies.

$$
\begin{array}{lll}
\mathrm{M} & = & \text { Methanogens } \\
\mathrm{EH} & = & \text { Extreme halophiles } \\
\mathrm{T} & = & \text { Thermoacidophiles }
\end{array}
$$

$\qquad$ Found in mineral springs and thermal volcanic vents on ocean floor
$\qquad$ Found in waters of extreme salinity (15 to 20\%)
$\qquad$ Some are important symbionts in termites \& other herbivores
$\qquad$ Some are important decomposers in marshes and swamps
$\qquad$ Contain the pigment bacteriorhodopsin
$\qquad$ Use $\mathrm{H}_{2}$ to reduce $\mathrm{CO}_{2}$ to $\mathrm{CH}_{4}$
$\qquad$ Habitat is hot $\left(60^{\circ} \mathrm{C}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$ and acidic (pH 2 to 4)
20. How is photosynthesis in cyanobacteria similar to that in plants?
21. Bacteria are important in the chemical cycling that occurs on earth. Match the bacterial group with the correct role.
$\qquad$ Convert $\mathrm{N}_{2}$ to $\mathrm{NH}_{3}$ and $\mathrm{NO}_{3}{ }^{--}$
A. Autotrophic bacteria
$\qquad$ Convert $\mathrm{NH}_{3}$ to $\mathrm{NO}_{2}{ }^{-} \& \mathrm{NO}_{3}{ }^{--}$
B. Decomposers
$\qquad$ Convert $\mathrm{NO}_{3}{ }^{-}$to $\mathrm{N}_{2}$
C. Denitrifying bacteria
$\qquad$ $\mathrm{Fix} \mathrm{CO}_{2}$
D. Nitrifying bacteria
$\qquad$ Support food chains
E. Nitrogen-fixing bacteria
$\qquad$ Some produce oxygen gas
$\qquad$ Break down dead organisms and waste
$\qquad$ Return elements ( C and H ) to the environment
22. Match the definition or description with the correct term.
$\qquad$ Ecological relationship between organisms of different species that are in direct contact
$\qquad$ Organisms involved in symbiosis
A. Commensalism
B. Host
$\qquad$ Usually the larger symbiont
C. Mutualism
$\qquad$ Symbiotic relationship where both symbionts benefit from the relationship
Symbiotic relationship where one symbiont benefits and the other is neither harmed nor helped
$\qquad$ Symbiotic relationship where one symbiont benefits at the expense of the other
23. Legumes are a group of plants that contain nitrogen-fixing bacteria in root nodules.
a. What does each organism get from this relationship:

The plant gets: $\qquad$
The bacteria get: $\qquad$
b. What type of symbiotic relationship (mutualism, commensalism, or parasitism) does this represent?
$\qquad$
24. Humans exploit bacteria and other prokaryotes for scientific and commercial purposes. List 5 of those uses.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

